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Abstract
We study the new characteristic gapless charge ordered state in a spinless
fermion system on a triangular lattice under strong inter-site Coulomb
interactions. In this state the charges are spontaneously divided into solid and
liquid components, and the former solid part aligns in a Wigner crystal manner
while the latter moves among them like a pinball. We show that such a charge
ordered liquid is stable over a wide range of filling, 1/3 < n < 2/3, and
examine its filling dependent nature.

1. Introduction

Ever since the concept of frustration-induced ‘spin liquids’ has been introduced to the
triangular lattice systems [1], the theoretical search for a special state without any types of
long range ordering has proceeded in the the strongly correlated systems under geometrical
frustration [2, 3]. Such liquids are now being explored experimentally in materials like
NiGa2S4 [4] and κ-ET2Cu2(CN)3 [5]. However, the competition among several orders towards
their destruction often makes the system reconcile with another different type of ordering.
Simplest examples are the spins on frustrated lattices forming dimers [6], plaquettes [7], etc.
Most recent ones are reported on hard core bosons of a nematic ordering in a frustrated square
lattice [8] as well as of supersolids in the triangular lattice [9]. We also proposed a frustration
induced novel charge liquid in a triangular lattice denoted as a ‘pinball liquid’ [10], which
turned out to have very similar character as the above supersolids despite the difference in the
statistics. This state has a coexistence of a Wigner crystal type of solid and itinerant liquid type
of charges so that a phase separation is expected without any domain structures. In this paper
we examine the filling dependent nature of this liquid in detail in the spinless fermion system
and confirm the strong coupling picture.

2. Model

The present spinless fermion system is described by the t–V model Hamiltonian,

H =
∑

〈i, j〉

(
−tc†

i c j + h.c. + V ni n j

)
, (1a)
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Figure 1. Schematic illustration of the representative classical ground states: (a) twofold stripes,
(b) basic three sublattice structure and one of its contingents.

where c j denotes the annihilation operator of fermions and n j (=c†
j c j ) is its number operator.

The summation is given over the nearest neighbour (nn) pair sites on a triangular lattice with
indices 〈i j〉. Together with the strong coupling argument, we perform the exact diagonalization
on an N = 4 × 6 cluster with periodic boundary conditions, which could fully describe both
the threefold and twofold type of periodicity which reside in the present system. Since the
size dependence of the energy is confirmed to be very small and also the correlation function
shows a well converged character within a relatively short range in comparison with the parallel
works [10, 9], the present results are sufficiently qualified to support the physical picture we
present.

3. Strong coupling theory

In the strong coupling limit, t = 0, the system is identical with the classical Ising S = 1/2
spin system on a triangular lattice. The ground state is disordered due to a macroscopic number
of degenerate states [12] which are classified into two groups according to their periodicity
as shown in figure 1; one portion is composed of twofold striped states which have staggered
alignment of charges in any one of three directions but is disordered in other two directions.
This state has an order

√
N degeneracy. The others have a three sublattice structure represented

by figure 1(b). Here, as long as A and C sublattices are filled and empty, respectively, the
configuration of the B sites is chosen arbitrarily. In addition, there are a large number of
contingents which include the irregular structure on A and B sublattices as shown in figure 1(b)
but still have the same binding energy. Including all of them, the three sublattices can afford
any fillings over 1/3 < n < 2/3 without changing the binding energy, in sharp contrast to the
strictly half-filled stripes.

The introduction of t �= 0 drives the classical disordered system to a new ordered phase,
which we call a pinball liquid [10]. For simplicity, we start from the n = 1/3 case, which has
a well known unique ground state, where only the A-sublattice is filled. Then the extra binding
energy 2V is required to move a single charge from one of the A sites, thus the ‘pins’ on the
A site form a solid. Next we add a single extra charge on one of the empty sites. This charge
can move to another nearest empty site without losing the binding energy. Therefore once the
filling is off n = 1/3, the system discontinuously becomes gapless. The simplest picture of
the pinball liquid is that the extra charge moves around like a ‘ball’ avoiding the ‘pins’ on
the A sublattice. The kinetic energy gain per single ‘ball’ corresponds to the bandwidth of
the honeycomb lattice which is obtained after depleting the A sublattice (pinned sites) from
the original lattice. With increasing filling the energy gain will be affected by the correlation
among ‘balls’. We plot in figure 2 the estimation of E1 = (EQ − EC)/N , where EQ is
numerically obtained by the diagonalization of equation (1a) and the classical binding energy
is given by EC = 3V Ne, where Ne denotes the electron number. The kinetic energy gain, |E1|,
2
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Figure 2. Kinetic energy gain, E1 = (EQ − EC )/N , in the formation of a pinball liquid at N = 24
with t = 1 as a function of (a) 1/V and (b) Ne, where Ne = 8, 12 corresponds to n = 1/3, 1/2,
respectively. The fitting by the power of 1/V is given in (a), whose results are reflected in (b)
as those of V = ∞. The band energy gains of the free electrons on corresponding honeycomb
(N = 16) and triangular (N = 24) lattices are shown together for comparison.

increases with increasing filling, i.e. the number of ‘balls’ that can move. In figure 2(a) we fit
the data by the power of 1/V as E1 = c0 + c1/V + c2/V 2, where c j are fitting constants
and c0 gives the kinetic energy gain in the strong coupling limit. The obtained results at
V = ∞ are given as a function of filling in figure 2(b) together with E1 at finite V . In the
strong coupling limit, E1(V = ∞) seems to follow the band energy of the honeycomb lattice
at Ne < 10, which supports the simplest pinball liquid picture we discussed above in the
dilute case. As the filling approaches n = 1/2, E1 deviates from the honeycomb one and
saturates. This is because the correlation among ‘balls’ increases to avoid the loss of V as
they becomes dense. Then the balls can no longer move independently of each other and the
wavefunctions become relatively localized so that the kinetic energy gain does not increase
much with Ne.

Although we see shortly that the pinball liquid is dominant over 1/3 < n � 1/2, its
stability is still the most difficult to be guaranteed at half-filling because the largest number of
contingents exists that might destroy the ‘pins’ to some extent. We remind that the charges on
B and C sites can hop by t to its neighbouring site as in figure 3(a) without the loss of binding
energy when the neighbouring population number of that charge remains unchanged. The
example is given in figure 3(b) where some of the balls can move in the direction indicated
by arrows. This rule also holds for the charges on the A site in the irregular contingent
states, e.g. when three neighbouring hexagons have special kind of configuration as shown in
figure 3(c). Fortunately, in this case the contingent cannot destroy the ‘pins’ completely. This
is because the charges which were originally a ‘pin’ cannot go more than one site away without
freezing the configuration of the original two neighbours. Otherwise, one of these neighbours
refills the original ‘pin’ and the ‘balls’ can move again smoothly. Therefore, although the
local fluctuations squeeze the amplitude of the ‘pins’ they remain relatively stable [10] and the
collective destruction of ‘pins’ does not take place. Considering the particle–hole symmetry,
the same discussion holds by regarding the C sublattice (holes) as ‘pins’. Therefore, the ‘pins’
and ‘balls’ are not completely fixed and free, respectively, at half-filling.
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Figure 3. (a) Example of two bases that are allowed to mix by t . The ball can move from site i to
j when the extra two neighbours of site i with big circles together have the same number of balls
as those of site j . (b) Representative basis of the three sublattice states at n = 0.5. Filled black
circles and gray or red circles denote the ‘pin’ and ‘ball’, respectively, and the open circle the empty
C sites. The ‘balls’ on the C site can move to the neighbouring B site and vice versa when condition
(a) is fulfilled. Arrows show the possible movement. (c) Example of the case when the ‘pin’ (big
black circle) on the A site moves to its neighbour. When the black circle moves away from the
configuration shown at the bottom, the two ‘balls’ marked with the big circle can no longer move.
If one of these ‘balls’ refills the original ‘pin’, then other balls can move away.

Figure 4. (a) Three-body correlation function, P3(i) = 〈n1(1 − n2)ni 〉, along the second chain
at several fillings between 1/3 � n �= 1/2. Ne = 8, 12 correspond to 1/3 and 1/2 fillings,
respectively. (b) Amplitude of P3 as a function of Ne at sites i = 4, 5, 6 which belong to the A, B,
C sublattices, respectively. The difference between pins and balls becomes small near half-filling.

(This figure is in colour only in the electronic version)

4. Correlation functions

To further compare the stability of the pinball liquid under different fillings, we present
the numerical estimation of order parameters for several number of charges Ne = 8–12 at
N = 24, which correspond to the fillings, n = 1/3–1/2. As discussed elsewhere, the pinball
liquid is characterized by a three-body correlation [10]. Figure 4 shows such a function,
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P3(i) = 〈n1(1 − n2)ni 〉, at t = 1. As we see in figure 4(a), the amplitude of ‘pins’ (A) near
n = 1/3 is almost 1 which decays only little with distance. This sturdily supports the strong
coupling picture and is also consistent with the fact that the kinetic energy gain in figure 2(a)
at low fillings is almost identical with the honeycomb lattice band energy. With increasing Ne

the oscillation amplitude of P3 becomes suppressed and has larger decay. It is more clearly
displayed in figure 4(b) as a function of Ne for several choices of V . However, the amplitudes
of ‘pins’ are always larger for larger V , and we expect a long range order in the bulk limit at
least in the very strong coupling region even at half-filling.

5. Summary

We have displayed the process of formation and the detailed nature of the new gapless charge
liquid denoted as the pinball liquid at 1/3 < n � 1/2, which was reported very recently
at half-filling [11]. Due to the particle–hole symmetry, the same results are obtained for
1/2 � n < 2/3 by just regarding holes as ‘pins’. Despite the anticipation that the increasing
number of particles towards half-filling might drive the ‘pins’ towards destruction, the kinetic
energy gain and the correlation function indicate that the pinball picture still holds while the
balls become strongly correlated.
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